Salyards, G. W., Lemoy, M.-J., Knych, H. K. et al. 2017. Pharmacokinetics of a novel, transdermal fentanyl solution in rhesus macaques (Macaca mulatta). JAALAS 56(4), 443-451.

Rhesus macaques (Macaca mulatta) are the most commonly used NHP biomedical model and experience both research and clinical procedures requiring analgesia. Opioids are a mainstay of analgesic therapy. A novel, transdermal fentanyl solution (TFS) has been developed as a long-acting, single-administration topical opioid and was reported to provide at least 4 d of effective plasma concentrations in beagles (Canis familiaris). To evaluate the pharmacokinetic profile of TFS in healthy adult rhesus macaques, we used a 2-period, 2-treatment crossover study of a single topical administration of 1.3 (25) and 2.6 mg/kg (50 μL/kg) TFS. TFS was applied to the clipped dorsal skin of adult rhesus macaques (n = 6; 3 male, 3 female) under ketamine sedation (10 mg/kg IM). We hypothesized that TFS in rhesus macaques would provide at least 4 d of effective plasma concentrations (assumed to be ≥ 0.2 ng/mL, based on human studies). Plasma fentanyl concentrations were determined by liquid chromatography–tandem mass spectrometry before drug administration and at 0, 0.5, 1, 2, 4, 8, 12, 24, 36, 48, 60, 72, 96, 120, 144, 168, 240, 336, 408, and 504 h afterward. Noncompartmental pharmacokinetic analysis was performed. For each dose (1.3 and 2.6 mg/kg), respectively, the maximal plasma concentration was 1.95 ± 0.40 and 4.19 ± 0.69 ng/mL, occurring at 21.3 ± 4.1 and 30.7 ± 8.7 h; the AUC was 227.3 ± 31.7 and 447.0 ± 49.1 h/ng/mL, and the terminal elimination half-life was 93.7 ± 7.1 and 98.8 ± 5.4 h. No adverse effects were noted after drug administration at either dose. Macaques maintained plasma fentanyl concentrations of 0.2 ng/mL or greater for at least 7 d after 1.3 mg/kg and at least 10 d after 2.6 mg/kg topical administration of TFS. A single TFS dose may provide efficacious analgesia to rhesus macaques and reduce stress, discomfort, and risk to animals and personnel.

Year
2017
Topic