Animals in Agriculture

Less Milk, More Profit

Organic feed and rotational grazing keep this dairy green.
Christopher Shirley


LONE ROCK, Wis. –Carl Pulvermacher's rolling herd average dropped 2,000 pounds this year. And starting in '92, he won't even milk in January or February. Is this any way for a dairyman to make a living?

Pulvermacher thinks so. By relying on rotational grazing, seasonal milking and feeds grown without purchased herbicides or fertilizers, he figures cost reductions will offset lower production. And the 10- to 20-percent organic premium he receives for his milk could make his bottom line even better than when his herd averaged 20,000 pounds.

"We've got to manage our cost per hundredweight of milk, and invest less time and capital in unnecessary machinery," says Pulvermacher, who wants to bring his milk cost well below the $12.64 per hundredweight he had in '90. "We can cut feed costs dramatically for 5 or 6 months of the year with rotational grazing."

This strategy makes more sense than buying high-priced concentrates and culling every slow-breeding cow just to make more milk, says the 40-year-old dairyman. He milks 55 cows in south-west Wisconsin on his 220-acre dairy, which became certified-organic in '88. But he's been growing prize-winning crops of corn, barley and soybeans without chemicals for 10 years. (See "Organic Corn Winner & Still Champ," The New Farm, May/June '89.)

"You can really cut your off-farm inputs–almost 100 percent in our case," says Pulvermacher. His 162-bushel corn crop grown for just $1.16 per bushel was tops in his region and placed fifth in the state's maximum economic yield contest in '87.

Grazing Beats Harvesting
To make the transition to seasonal milking, Pulvermacher bred 37 cows and heifers last May for calving the first week in March '92. "To synchronize our herd, in January we'll be selling about 30 other cows–some of our best genetics– but be back milking at least 40 cows by March."

He says some dairymen can't fathom seasonal milking, though. "'You don't want to milk cows in winter? Are you lazy?' they ask" But Pulvermacher sees it as an opportunity to make the best use of his pastures, and to use some of the time off for vacation travel with his family. It also will give him some additional time to devote to the many sustainable agriculture programs he's actively involved in.

Pulvermacher began relying more on rotational grazing of his milkers just last spring. Before switching, he fed cows haylage and high-moisture ear corn twice a day for as much as 80 percent of their dry-matter intake. "The darn cows figured out that they could stand in line for feed rather than grazing in the pasture," he quips.

Now, for six months of the year, the milking herd is out foraging. In mid-April, they start rotating through alfalfa/bluegrass/ orchardgrass pasture divided into 16 paddocks. There's no way to put up feed of the quality we're grazing," says Pulvermacher.

"Carl's getting exceptional-quality feed off his grazing–and doing it cheaply," says Carl Fredericks, coordinator of the Southern Wisconsin Farmers Research Network. Pulvermacher is one of five farmers in the network participating in a state-funded study on rotational grazing.

"His forage samples consistently show more than 20 percent crude protein, with 25 to 30 percent early in the season," says Fredericks. In '90, Pulvermacher's hay fields averaged 4 tons of dry matter per acre and 26.5 per cent crude protein.

For grazing, cows spend up to a day and occasionally two days, in each paddock. Portable polywire lets Pulvermacher move the herd to the next paddock in 5 to 10 minutes. "That's a lot quicker than shaking bedding," he notes.

Dry cows and heifers follow a day behind the milkers in the paddock rotation. "We do a lot less clipping using them as a cleanup crew –usually just one clipping after the fourth grazing," observes Pulvermacher. "Clipping eliminates thistles and smoothes out uneven patches before the next grazing." After the fourth grazing, the heifers are switched to haylage.

Seeding High Quality
Starting this year, Pulvermacher plans to broadcast-seed pastures every other year with 2 pounds each of red clover, canarygrass and birdsfoot trefoil. He establishes 40 acres of hay fields each year (usually into a barley nurse crop following corn) by seeding a mix of 12 pounds of alfalfa and 2 pounds each of red clover, timothy, canarygrass and birdsfoot trefoil.

He added the trefoil to his hay mix in '89. He likes the deep-rooted legume in part because its low seedpods survive clipping at 6 inches. He'd heard that quackgrass might crowd out the trefoil but that hasn't happened. He has some quack, but likes it for forage. Cultivation keeps it manageable in his row crops, where it provides some erosion control.

To maintain soil fertility, Pulvermacher relies on dairy manure for all of his fields. On the 33 steepest acres, watering stations are three-fourths of the way up the hill. "I manure the top third or top half with a spreader, and the cattle take care of the rest. Everything else gets 12 tons of manure per acre, whether it's hay ground or crop land."

Pulvermacher installed 4,600 feet of 1-inch-diameter plastic watering pipe last April. "That gave a quick payback on a $600 investment," he says.

Feed Less, Make More
While the herd is on pasture, Pulvermacher supplements each cow's grazing with a standard ration of 15 to 17 pounds of high-moisture ear corn and 10 ounces of minerals. Cows with less than 120 days in lactation also receive up to 1 pound of roasted soybeans.

Pulvermacher contracts to have his own soybeans roasted, ensuring that all his feed is certified-organic. Most years, he grows about 11 acres of soybeans and 35 to 45 acres of corn. The minerals are the only off-farm purchase in the feed.

Standard winter rations include 20 to 25 pounds of ear corn, 4 pounds of roasted beans, and some hay and haylage. Calves get 5 pounds of ear corn and free choice of hay.

Pulvermacher likes feeding ear corn. "My corn is cheap –less than a nickel a pound. And it's good for body condition. With reduced feed costs now that we're grazing more –and transporting and storing less–I figure we're saving a dollar per cow a day." Pulvermacher stores ear corn as high-moisture corn in a 14. by 70-foot silo and haylage in a second silo.

Since organic certification limits some treatment options, Pulvermacher keeps a careful eye on herd health. We're on a vigorous herd-health program now, with 80 percent of my annual vet bill for vaccines, preventive care and nutrition work rather than treating acute problems."

An experienced veterinarian–Marta Engle of Soldiers Grove, Wis. – taught Pulvermacher how to use homeopathic remedies, which rely on minute doses of herbal or other natural preparations to help solve health or breeding problems. "We started using homeopathic approaches three years ago, when we knew we'd be applying for organic certification. I don't like the added time and patience that homeopathic remedies require, but they've worked in our dairy."

For acute concerns, though, Pulvermacher says he might let the vet intervene with antibiotics, to fight a bad case of mastitis, for example. "If a cow will still eat, you can take care of mastitis in ways other than antibiotics, which would require a 30-day milk withdrawal," he says.

"Keeping a cow's environment dry is a key part of preventing mastitis, plus proper milking," he notes. So Pulvermacher keeps his cows outside as much as possible, even in winter. "The manure freezes, and cows are on a clean bedding pack. It beats letting the cows lay in a building where it stays dirty. And cows have access to shelter when there's snow or sleet, which is about 4 or 5 days of the month."

Pulvermacher uses a conventional wormer at vaccination time for stock under 1 year old. He hasn't had any parasite problems with stock.

He thinks the carefully controlled grazing will provide additional benefits beyond cutting feed costs. "I expect rotational grazing's more natural environment to payoff in easier breeding. Cows with breeding difficulties during the winter are responding well to grass, and I figure they'll be pregnant next winter," he says. "If I can get cows and heifers to breed when I want, and forage when I want, they'll pay their way."


Reproduced with permission of the publisher. The New Farm, Sept/Oct. 1991, p. 13-17.

Natural Grazing —Super-Natural Benefits

'Modern prairie' boosts pasture production
David Schafer

To ensure a tight calving season, we try to follow grazing researcher Jim Wiltbank's six principles for effective reproduction:
TRENTON, Mo. –Like the Robert Frost poem, we've discovered that taking the road less traveled "has made all the difference." In the mid-'80s, we converted our cropland to pasture, and started managing our livestock and forages more like the prairie ecosystem that once grew here.

The difference has been a leap in biodiversity (especially legumes and other desirable species), a longer grazing season and thicker forage stands. Healthier forages have improved soil structure and water retention, reducing erosion and making our farm less susceptible to drought.

Our livestock are healthier and happier too. We have 70 purebred Gelbvieh cows and run up to 40 stockers and 300 sheep on about 350 acres of pasture. That's about 50 percent more stock than we carried before we subdivided pastures and intensified our management.

Choosing this different road has made our life simpler and our problems fewer. We have time for community activities and travel, and we don't need off-farm jobs. Alice, my partner and wife, sums it up best: "Isn't this the greatest life!"

Harsh Reality
Life wasn't always so sweet or simple. After growing up in the city and pursuing urban careers, we welcomed the opportunity to start farming my grandparents' land in 1980. Our original goal was to become conventional superfarmers. We steadily increased corn and oats yields during our first three years.

Then reality hit us hard. A simple soil-depth analysis revealed that some of our best cropland had only 2 inches of topsoil left! But there was a ray of hope. An adjacent hayfield still had 8 inches of topsoil. That amount was only half of what was there originally, but the significance was clear. We laid two options before the family farm corporation: Strip crop or put everything into forages.

Big changes are hard to make. After strip cropping for two years, we admitted it was just a band-aid solution for our farm. Our land had no business being tilled. We finally made the right choice and seeded down all the cropland.

About that time, we toured New Zealand. What an education! Farmers there fatten lamb and beef, ship it thousands of miles, undersell us, and still make a profit. They accomplish this feat by producing high-quality forages through controlled grazing systems that depend on intense management, subdivided pastures and frequent stock moves.

Grain is too expensive there to feed it to livestock, yet their meat tastes superb. We were amused when a New Zealand woman asked us, "Don't you think grain-fed meat tastes, well funny?"

We came home inspired. We subdivided 40-acre pastures into 10-acre paddocks, and rotated stock about once a week. Not much happened.

Density Yields Diversity
We didn't give up. We knew controlled grazing worked because we had seen it in New Zealand. We took Stan Parsons' "Ranching For Profit" course and became familiar with the work of his former partner, Allan Savory. (See "Toolbox" in this issue for details on Parsons' new home-study course) These two men are largely responsible for bringing innovative range- and pasture-management ideas to North America.

In Africa, Savory and Parsons observed that wild grazing herbivores (unlike fenced farm animals) travel in large herds and stay close together because of predators. They also roam constantly because of the repugnance of their own wastes. As a result, forage is closely cropped, then has a chance to regrow before being grazed again.

If herbivores have clustered and migrated for millenia, then the forages they graze must be adapted to that behavior. To bring our deteriorating land closer to its natural prairie condition (short of bringing back predators), we had to start managing livestock to simulate the predators' effects.

So we subdivided more, cutting up pastures into 2- to 3-acre paddocks, and increased stock density by putting 30 to 40 cows
at a time on these smaller paddocks. To mimic migration, we moved them to new grass every day or two.

Because of these changes, our pastures are evolving into what we call "modern prairie"–a more diverse, stable and natural environment than found in traditionally managed pastures.

We've seen our pastures thicken with new plants, and found warm-season grasses (such as big bluestem) volunteering in what used to be solid tescue.

In a small cross section of our farm, we found more than 100 plant species, not including trees. We planted just four of those, and only a handful of the l00 aren't grazed at some growth stage by our cattle, sheep or guard donkey. Each plant species taps a unique array of nutrients, and provides a unique environment above and below the soil, allowing other creatures to thrive.

Increasing the biodiversity of our land is an important goal for us, because it is the foundation of our pasture productivity and stability. Biodiversity– coupled with efficient reproduction and value-added marketing leads us to more profit.

Flush When It's Lush
Just as we subdivided and increased stock density to imitate natural predator effects, we also use nature as a guide for our herd's genetic and reproductive management. Our breeding season matches the growing season. We don't feed grains to boost reproductive performance. Females are expected to breed during the spring burst of forage growth. If a cow isn't bred to calve between March 1 and April 30–for whatever reason–we sell her. She apparently isn't well-adapted to our environment and management.

  • Heifers weigh nearly two-thirds of their mature weight at breeding.
  • Cows have a body condition score of 5 at calving.
  • Cows are gaining weight two weeks before breeding.
  • Calves are removed for 48 hours breeding to stimulate estrus.
  • Calving season is 60 days.
  • Bulls are checked annually for fertility and libido.

We used to reason that the earlier calves are born, the higher their weaning weights. So our herd calved in January and

February. Cows were lactating and being bred while still on hay–a very costly practice.

It makes much more sense to match the breeding season–when a cow is at her peak nutritional demand –with the time when pasture nutrition is also at its peak. So now we flush the cows on our lushest grass in mid-May, and then turn in the bulls.

We used to accelerate estrus by separating calves from their mothers for 48 hours beginning the day the bulls are turned in. You can't buy a better, more natural estrus stimulant: But since most of our cows are already cycling by breeding time, we have discontinued this practice. Most years, about 75 percent of our cows conceive during their first estrus cycle and calve during the first 21 days of the calving season. Only a handful remain unbred after two cycles.

Cycling within such a tight period, the cows' nutritional needs rise and fall together, simplifying nutrition management. Calving chores are easier too. The days of checking, weighing and tagging newborn calves are concentrated into a short season. At weaning, the calves are nearly the same age, so there are no runts to get bossed around. And at marketing, a uniform group of calves is more valuable–as well as a beautiful sight to behold.


 How To Track Pasture Production

The vast majority of our forage production comes during just three months. The big challenge of livestock production is to ration out that spring and fall growth over the entire year. We use several planning tools to make the job easier.

Stan Parsons designed the grazing chart we use. (Contact: Ranch Management Consultants. 7719 Rio Grande Blvd. N.W., Albuquerque NM 87107, (505) 898-7417.) Along the left-hand side of the page we list the paddock identifications. Running horizontally from each paddock ID are 365 boxes representing the days of the year. Each day a paddock is grazed, we shade in the corresponding box. The chart shows us at a glance how long cattle grazed each paddock and how long it rested.

We record forage growth in each paddock using our grass budget chart. Every 10 days we take an enjoyable hike through all 63 paddocks. We rate each paddock on a scale of 1 to 10. Since this rating is purely subjective, the same person should score each time. My scale goes something like this:

  0 = Bare dirt.
  1 = 1 inch of forage.
  2 = 2 inches of forage.
  3 = 3 to 4 inches of forage.
  4 = Just right to graze if growth is fast.
  5 = Graze now.
  6 = Getting behind.
  7 = Too late to graze; make hay soon.
  8 = Make hay now.
  9 = Getting late.
10 = Oops. we're wasting feed!

We multiply each score times the number of acres in the paddock. We add the results to give a total forage score for the farm for that 10-day period.

Then we plot those totals on a forage growth graph. (See below.) Connecting the dots for each 10-day period gives us a trend line so we can see where we're headed. We can predict whether we'll have surplus forage and have to make hay, or whether we'll be short. By adding 10-day rainfall totals to the graph, we can easily see how our pastures respond to moisture.



Tracking forage production like this helps us make the right decisions for the stock. They respond with better weight gains and higher conception rates, and they stay healthier on a more natural diet. Because of the frequent moves, they associate us with fresh feed and are very docile. Put into a new paddock, cows graze like gluttons. Their mindful babies learn to do the same, and grow into aggressive grazers.
                                                                                                                                                                 —D.S.


Natural Lamb Adds Profits
Because we don't buy and sell our purebred livestock on the commercial market, we sacrifice some flexibility. We compensate with sheep and stocker calves that serve as a buffer against the peaks and valleys of forage growth. If forage is tight, we sell some stock. If we have a surplus, we buy more.

Sheep fit beautifully in a well-fenced cattle operation. Since only about 60 percent of their diet overlaps with cattle, pasture utilization improves. They can graze with cattle or apart.

Even though our farm is in prime coyote territory, we haven't had any attacks. Rotating paddocks helps prevent predators from knowing where and when to expect their prey. Electric fencing probably discourages them too. We have a Great pyrenees dog, but feel that our guard donkey might be adequate, alone. Since she grazes with the sheep, she's certainly less expensive to feed than the dog.

By managing our pastures better, we've reduced our feed costs and added stockers and sheep–increasing the livestock we carry by 50 percent on a weight basis. We've also increased our profits by not buying fertilizer and lime. (Why encourage more grass to grow until you can effectively use all that you've got?)

But the greatest contributor to our bottom line comes from adding value to what we produce. We made a great move when we switched from commercial cattle to registered Gelbvieh stock. Gelbvieh are very efficient producers, plus we receive a premium for seedstock.

A new endeavor that holds promise is direct marketing our lamb. Adding value by processing, packaging and delivering frozen lamb is more profitable than selling through normal markets. We sell everything from whole lambs to popular cuts. In a short time, we have expanded to include our own lean ground beef and shiitake mushrooms. We also market garlic braids, pork and eggs from other organic farmers.

Our selling strength is that our lamb is raised in a wholesome, natural environment, free from all the chemicals that city folks are concerned about. Having lived in both worlds, we can easily relate to our urban customers.

Another goal is to help make consumers more aware of where their food comes from and how it is raised. We believe consumers have the power to change agriculture with their shopping decisions, and we want to help them shape the future.

New Attitudes

Thinking about intensive grazing and nature as a model focused our attention on the land. We were struck by how much of the big picture we failed to see. Disturbing the soil–both physically and chemically–had taken its toll.

As our faith in conventional advice plummeted, we began to think for ourselves. For example, we developed a new attitude about "pests." We used to agonize over ragweed: It seemed to appear in all the intensively managed paddocks. But then we asked ourselves, was it taking over or just filling in bare spots? We came to realize its roots loosen the soil and its leaf litter catches water. It is a colonizing plant that prepares a seedbed for more desirable species. We also found that livestock eat ragweed when it's young and tender.

Nobody likes flies. But we started asking questions about them too. Are fly outbreaks caused by stock congregating in their own wastes too long? Do these pests provide any benefits, such as breaking down manure and speeding up nutrient cycling? What are the costs and benefits of a quick-fix fly killer? We decided flies aren't really the problem: They are just a symptom of poor management.

When we consider questions like these, we look to nature for answers. Nature teaches us tolerance, patience and a new perspective on problem solving. We now recognize what Native Americans always knew: We are just another strand in the web of life, supporting and supported by the rest of nature's creations.


Reproduced with permission of the publisher. The New Farm, May/June 1992, p. 14-20.

ABCs of Rotational Grazing: An SCS grazing specialist answers beginning

ITHACA, N.Y.–In Part 1, I helped you calculate how many paddocks and how much pasture you need to start rotational grazing. (See "ABCs Of Rotational Grazing," The New Farm, May/June '91.) I'm sure you've got other questions on your mind by now. Here are the ones I get asked most often:

What kind of fencing should I use? It's your choice. But whatever you use, I suggest building as many permanent paddocks as you think you'll need, based on the Steps outlined in Part I. I think permanent fencing actually adds to your flexibility, because then you can hook up polywire almost anywhere if you need to subdivide further. The secret is to have enough permanent subdivisions in the system so that you can't go wrong if your labor resources get stretched thin.

I'm wary of setting up systems that require you to move temporary fencing every time you move livestock. Moving wire is very labor-intensive. Some farmers enjoy it. But for many, the thrill wears off pretty fast. Some say it only takes them 20 minutes to move fence. It takes me 10 minutes just to get my boots on and get out the door.

When you're milking by yourself because your spouse is sick, the kids are getting hungry and there's a cold rain falling, you won't want to spend even 20 minutes moving fence. That's why I suggest designing your permanent fencing so all you have to do is open a gate before you go make supper.

What shape should my paddocks be? For best use of forage, the closer to square your paddock is, the better. Rectangles are OK as long as they are no more than four times longer than they are wide. With bigger rectangular paddocks, livestock will graze the gate ends more heavily than the far nooks and crannies. If you must build long paddocks, use polywire or other temporary fencing to break them up into shorter rectangles or squares.

How should I orient my paddocks on slopes?
Don't run rectangular paddocks up and down slopes with gates and water at the bottom. Livestock will graze half-way up the slope, then come back for water and start grazing again at the bottom. You 're up with overgrazing at the low end, and undergrazing at the far end. Whenever practical, make your paddocks along the contour, and run lanes up and down the slope.

Where should I put my gates?
Locate gates in the direction of the natural flow of the herd–usually at the end of the paddock closest to the barn. If you don't, when half the herd wakes up and sees the rest of the herd heading down the lane, they'll head for a gateless corner to catch up. They may never find their way out.

Where should I locate water?
The more accessible, the better. But you probably don't need waterers in every paddock. You can make one waterer serve two paddocks by locating it in the fenceline. Putting the waterer in the lane to serve several paddocks is OK. But the area is likely to get muddy, and manure will accumulate where it's not fertilizing your pastures.

Some farmers who are quite successful with rotational grazing only have water back at the barn. You run the risk that the livestock will come back for a drink and won't go back out to graze, and you're likely to suffer some production loss with high-producing animals. But if that's your only option, don't let it stop you from grazing. Compared to confinement feeding, you'll more than make up for any production losses with the cheap feed, and your cows will be in great shape.

How tall should the pasture be when I start grazing?
With most improved pastures consisting of grasses like brome, fescue, orchardgrass and timothy, as well as legumes like red clover, ladino clover and birdsfoot trefoil, I tell farmers to start grazing when the plants are about 8 to 10 inches tall. In early spring, you can start when they're about 4 to 6 inches tall. That saves you a few extra days of winter feed, plus it helps stagger pasture regrowth a little bit.

But don't be tempted to start too soon or you'll damage the pasture and it won't recover. I'd rather have the grass ahead of the cows than the cows ahead of the grass. Don't start grazing early in the same paddock every year. Rotate your "sacrifice area."

When should I move the livestock to new grass?
Some people will suggest you graze pastures right down to the dirt before moving cattle. I don't. With the improved forage species I mentioned above, leave at least 2 inches of stubble so that there is enough leaf area to ensure quick regrowth. It's about 2 inches from the tip of my middle finger to my knuckle. I simply stick my hand down through the grass to the ground to measure it.

If you don't leave 2 inches, those improved species won't bounce back quickly. Weeds and other less productive species will move in and take over. Also if you have livestock on too long, they have to work too hard to get enough dry matter. With high-producing animals, like milk cows, production will drop if you don't move them before the grass gets too short.

There's one exception to the 2-inch rule of thumb. You can't graze blue-grass/white clover pastures too close to damage them. Grazing that kind of pasture down to 1 inch helps maintain the white clover in the stand. Still, you have to move the livestock when those species get too short for the animals to graze efficiently. You can also start grazing bluegrass/white clover when it's about 4 to 6 inches tall.

Will I need to clip my pastures?
Clipping pastures can be a real waste of time, money and effort–especially if done for no better reason than to make the pasture look pretty. You should clip pastures when you have a problem, but not just to even up the grass. Harvest as much as you can with your livestock, first. Then mechanically harvest the surplus to be fed during the winter. If some of your paddocks still get away from you, then by all means, clip them. But as you fine-tune your management, you should find you have to clip less often.

How about shade?
Many dairy farmers are so concerned about shade that they refuse to put cows on pasture without it. The truth is, in the Northeast there are but a handful of days in a normal summer when lack of shade should be a concern. When heat is a problem, dairy cows can be turned out early in the morning or late in the evening to avoid heat. Shade isn't a necessity–good management is.

What about dragging?
With continuous grazing, dragging is almost a necessity. But once you get a good rotational system down, you probably won't need to drag very much. Like clipping, you may even be able to eliminate it completely. You'll find that the livestock will distribute manure more evenly, and that the manure will break up and disappear faster. You may still need to drag near waterers and loafing areas.

How do I balance rations when my animals are grazing?
That's a good question. But even if you don't balance your milk cow's ration exactly right, you're still going to end up making cheaper milk.

Ed Rayburn, grasslands specialist at Seneca Trails RC&D in Franklinville, N.Y., is developing a computer program to answer that tough question. It's part of a three-year project funded by the federal LISA research program, and should be released in late '91 or early '92. (Look. for a review in an upcoming issue of The New Farm.)

Ration balancing is important, says Rayburn, because you can loose a pound of milk for every pound of grain you don't feed that your milk cows need. But he's encouraged, because the principles of ration balancing on pasture are the same as barn feeding. He offers the following guidelines:

  • Make sure 20 to 50 percent of your pasture is legume to increase forage intake.
      
  • Make sure cows have enough forage when you turn them in-8 to 10 inches of improved grasses and legumes or 4 to 6 inches of bluegrass/white clover.
      
  • Start balancing your ration with a good carbohydrate source–shell corn, ear corn, barley or oats in moderation. Adequate carbohydrates are needed to make the best use of degradable protein in pasture forage.
      
  • With Holsteins averaging 60 to 70 pounds or more of milk per day, bypass protein becomes the limiting factor. In the 60- to 70-pound range, adding distillers grain should be sufficient. Above 70 pounds, add roasted or extruded soybeans (also a good source of oils and amino acids) or animal products.
      
  • Don't overfeed grain, or fiber intake levels will be too low. Too much protein can also reduce milk production.

I've done everything you suggested, and I'm still not getting the production you promised. What should I do?
First, you can live with pastures that aren't very productive even under intensive management by either cutting down the number of animals you're grazing or by increasing your pasture acreage. Chances are good those pastures are still more profitable than raising corn silage.

The next troubleshooting step is to take a good, hard look at your soil test. Ideally, you should test your soil before you set up your pasture system. But with the low priority most pastures have gotten in the past, soil testing usually comes as an afterthought.

Even if you do test your soil first, don't run out and order enough fertilizer and lime to grow 10-ton alfalfa. Most intensive grazing systems do just fine at moderate pH and fertility levels. If your soil is very acidic, lime to bring the pH up to about 6.0. Bring P and K levels up to the medium to high range suggested by your land grant university for grass/legume hay at yield goals appropriate for your fields.

Should I reseed my pasture?
If production is still less than you want after correcting any fertility problems, consider changing your pasture species. From my experience, this should be a last resort. But for years, it's been the first solution people think of. The typical scenario is this: Your pasture wears out. So you seed in some legumes or grasses, and maybe put on some fertilizer. Then you go on grazing it continuously and the new species disappear again.

You've got to change your management first. When mismanaged, grazing animals are nothing more than destructive pasture predators that can eat themselves out of house and home. Until you control your animals, reseeding is a waste of time and money. Only after you have established the grazing system, soil tested and fertilized should you even think about reseeding a pasture.

Chances are good that well-adapted forage species are right there waiting for you. At the Cornell Hillside Pasture Research Project, we cleared brush from an abandoned pasture one spring, and grazed it hard all summer. There was some pretty good orchardgrass coming in all by itself. But we no-till seeded the pasture with brome and birdsfoot trefoil in August. It took really well. After a couple of years, however, the brome and trefoil were gone, and–you guessed it –we had a great stand of orchardgrass. Live and learn.

If you do reseed, don't plow up your pasture. Frost-seed or drill new species into the existing sod. If you really did pick species that are better for your soils and management than the ones that are already there, the new ones will take over.

If you're really determined to do some seeding, don't look at your pastures. Look at some of your worn-out alfalfa fields. With a little fencing and seed, you could probably turn them into great pastures.

Or better yet, look at that corn field next to the barn, it's probably got great fertility from all the manure that's been spread there. Seed it down. Without corn, you won't have to spray so close to the house anymore. And the cows will be grazing right there where you can keep an eye on them.

"But Darrell, that's corn ground," you say. Sure. When that corn is 7 feet tall, it looks like a lot of feed. But it's in rows 3 feet apart and only grows a short time during the year. Pasture covers every inch of that soil and is green and growing eight months out of 12.

Unless you're getting 16 tons of silage off that field, you're losing money. In my mind, that's not corn ground. That's pasture ground. Plant it to pasture and develop a good grazing system and you'll get 5 tons of the cheapest high-quality feed you've ever raised, instead of losing money. Break out of that corn mindset. It may be the best move you ever made.

Editor's Note: Darrell L. Emmick is state grasslands specialist for the Soil Conservation Service in New York. Part I of this feature appeared in the May/ June '91 issue of The New Farm.


Reproduced with permission of the publisher. The New Farm, July/August 1991, p. 26-28.

Put Water Where You Want It: A mobile tank increases your pasture-management options

By Craig Cramer


NEW HAMPTON, Iowa–For less than $900, Mike Reicherts built a mobile waterer and mineral feeder for his 72 stockers. "I wanted a simple, portable system that can handle a lot of animals without having to refill it very often," he says. "You can't buy one. So I built one myself."

Reicherts views the low-cost tool as a temporary solution for getting water to all his paddocks. "Our grazing system is still in transition," he explains. "I don't want to bury water pipe until I know where I want everything to go."

The foundation of Reicherts' waterer is an old running gear (probably worth less than $50, he says) and a 1,200-gallon polytank (about $400 new, but considerably less at farm sales). The tank and gear are actually on loan from neighbor, and fellow grazier Tom Frantzen, who used them to fill remote stock tanks before installing his own permanent below-ground water system.

Reicherts bent 4 by 8-foot sheets of galvanized sheet metal to form the bottom and long sides of the troughs. Then he welded on the ends and reinforced the top edges with scrap, three-fourths-inch pipe. He estimates materials cost about $100 per trough. The gravity-fed water reaches each trough through plastic tubing connected to l-inch KGS Midi Flow valves. (Cost: About $35 each. Kentucky Graziers Supply, 1929 South Main St., Paris KY 40361, (800) 729-0592.)

Reicherts fashioned an angle-iron bracket to carry a Pride of the Farm three-compartment mineral feeder. (Feeder cost: About

$100. Hawkeye Steel Products Inc., P.0. Box 2000, Houghton IA 52631, (800) 553-1791.) He fills each compartment with a different mix–One high in calcium, one high in phosphorus and one high in magnesium–and lets the stockers balance their own mineral intake. The feeder is the most weatherproof one he could find, and cattle quickly learn how to use it, he adds.

Rather than hauling the waterer back to the farmstead, Reicherts recharges it from a 500-gallon nurse tank–usually just every other day, but daily during hot weather. He places the waterer where he wants to concentrate manure and hoof action. For example, if I have a thistle infestation, I'll park it right there. High animal impact increases plant diversity, and hopefully will push succession forward to more desirable species," he explains.

Even after he installs a permanent water system, Reicherts or his neighbor will keep the portable one handy for times when they move animals to remote fields. "This is one of those tools that increases our flexibility and gives us more options," says Reicherts.


Reproduced with permission of the publisher. The New Farm, May/June 1994, p. 55.

Pasture Proving Ground: This grazier puts tools and techniques to the test

Greg Bowman

HONEY GROVE, Pa.–Ed Rits rotated pastures when he was a dairyman, but he didn't see the potential of intensively managed grass until he switched to raising beef cattle in '87. He's been sharpening his grazing skills and product expertise ever since.

By developing his 100-acre farm around its 59 acres of pastured slopes and valleys, Rits has cut yearly inputs by $51,000 and slashed labor by 6,300 hours per year. He's also increased income by 50 percent. Debt-free since '88, he's financed all improvements with profit from his 25-cow Holstein x Hereford herd.

In the process, he's picked the brains of many recognized grazing experts and heard pitches for lots of products. He doubts any claim until he proves it right or wrong.

"Grazing is new for a lot of people, and there's some 'snake oil' being promoted. I want to help farmers get started with grazing, to keep their costs low and help them understand how grazing can work on their land," says Rits.

Family health problems forced him out of dairying. Service as a district conservationist with the USDA's Soil Conservation Service got him thinking about whole-farm resource management. It also put him in contact with grazing advocate Tom Calvert, an SCS conservation agronomist based in Somerset, Pa. When Rits realized he could profit from his land without struggling to produce crops in his flinty soil, he was ready to start farming again.

LEARNING FROM GRASS
"For years, I'd been moving my dairy cows through 35 acres of pasture divided into five lots," says Rits. "But I hadn't been managing the land resource. I'd keep them on a lot until the grass was too short, then turn them onto one that was too old. I couldn't understand why the cows didn't seem happy there. Sometimes, by coincidence, I'd get them on a lot with just a little regrowth and they loved it. But I wasn't meeting the needs of the grass and the animals together."

Rits follows one of Calvert's fundamental recommendations: Start with what you've got. In the farmer-to-farmer consulting work Rits began in '92, he emphasizes these points to new graziers:

  • Know your soils. "I was trained as a soils man, and that's where I started looking when I made the change," says Rits. Poorly drained soils need special management–especially in animal pressure and in what species you encourage through grazing or planting, he says.
      
  • Focus on feed value. Figure out how your farm can produce the maximum nutrition for livestock. "Sure, 180-bushel corn can produce up to 40 tons of corn silage, but it's not the highest quality feed. That same ground in alfalfa at 25 percent protein will give you a lot more feed value."
       
  • Watch before you plant. Find out what is growing naturally in your pastures, and graze it for several seasons. Observe how well it meets the nutritional needs of your livestock, and how it responds to intensive management. I waited five years before I planted my first new species. I knew by then that I needed a high-protein crop in fall to finish calves, and MATUA brome looked as if it would work." (See side-bar, "Starting MATUA.")
              
  • Maintain pasture fertility. Rits composts purchased chicken litter and solid cattle manure from his barnyard with straw and sawdust. He windrows the mixture in early summer, lets it stand without turning until fall, then spreads the finished material on pastures before the soil freezes.
        Compost encourages earthworms, which in turn break down dung pats. Rits says it took him five years of intensive grazing and several applications of compost to build up earthworm populations in his paddocks to their current robust levels. "Earthworms take care of dung pats in five days, reducing those green spots of regrowth that cattle reject."
         
  • Provide water. Rits started out with a traditional round concrete trough recommended by SCS for spring improvement projects" He had the traditional problems, too: cattle loafing around a heavily manured, muddy, tromped-down area. The spring still serves the herd in winter, and provides water in summer for the 32 paddocks closest to the barn. A pressurized water system now supplies 52 paddocks that are more remote or across the road. Rits uses surface lines with quick couplers to supply garden hoses that attach to mini-tanks. (See "No Tipping, No Waiting" ) He routes the hoses under fences and through culverts in waterways.
       
  • Ask lots of questions. Rits says beginning graziers should go slow, do their homework, and try to work with other farmers. "I've found The New Farm, Stockman Grass Farmer, and on-farm examples to be the best sources of information," he says. "Don't think you have to rush out to an expensive grazing conference with speakers from far away," he says. "Start by talking to graziers in your area, then in your state. You'll get a lot more from the 'big names' when you've got some of your own experience."
         
  • Study before you buy. While the profit in grazing comes from what you don't spend on tillage and harvesting, Rits says it pays to ponder what you will spend on hardware purchases long before you're ready to pound posts. Most of his local farm-supply stores don't stock suitable fencing hardware for intensive rotational grazing, and buying the right mail-order products can be challenging for the novice. "If you're not going to work with a consultant who's familiar with the market, plan to spend two years looking and reading," says Rits.
        He's learned a lot over the phone from fence-product suppliers, and says many grazing specialists in Extension and SCS are helpful. He sways it's not fair to try to milk product information from fencing–installation contractors. "Tell them up front you're looking for information. Don't occupy their time unless you plan to use their services."

START AT HOME
A paddock by Rits' house serves as his "making do" demonstration. There he has soft metal wire, metal posts and white ceramic doughnuts still in use–with old woven wire in place from years ago. The high visibility of the woven wire, set outside the remaining wooden posts, helps young calves realize there's a barrier. A single strand of electrified polywire convinces them and trains them for life. Rits also is quick to point out the limits of old fencing materials. Ceramic insulators on a wire loop don't work when polywire comes within a half-inch of the loop, and black rubber milker hoses are too soft to insulate loop of fence even on a dry day.

Think through each step of your pasture management and livestock movement before you position your first fence, he tells new graziers. There are lots of ways to hold up wire, but how often you plan to move a fence – and whether the posts need to bend – determines whether the cheapest post is the best value.

Rits has salvaged material for no-cost posts from area manufacturers. One batch was preservative-treated wood left over from construction at the local feed mill. "They were kind of bulky to handle in the field," he admits, "but I had nothing invested except the time to saw them to length." He used them in a permanent fence.

Where post flexibility isn't the issue, steel rods and rigid plastic pipes can work well, says Rits, as long as the necessary clip or insulator material keeps the total expense reasonable.

To show the cost range of posts he has tried for movable fence, Rits has a permanent display near his farmstead. Some are carefully designed commercial models. Others are adapted from inexpensive materials that were available close to home. For his annual grazing field day, he attaches price cards to the more than 20 post/insulator combinations and describes they've worked and weathered in the field.

His lowest-cost combination is a free post of stiff plastic pipe, outfitted with a cotter pin to hold the polywire. Not counting the labor to drill a hole, his material cost totaled 2 cents. At the top end is a long-life fiberglass post, fully bendable, with a slide-on plastic wire clip that allows the grazier – but not his animals – to slip out the wire. Cost to Rits for this combination of Spider system components was $1.77: $1.36 for the post, 41 cents for the clip.

He says the relatively pricey Spider combination earns its way in some locations on his farm because it is nearly deer-proof. "I installed my Spider posts after deer tore out in one night the polywire on rigid posts I had spent three days erecting, " he says.

Spider posts are flexible and the double-wedge clips allow wire to slide freely. He can step on the wire and hold it to the ground to cross it. When deer walk into the fence, they can't avoid contact and don't dislodge the electric barrier. "You have to learn where you can make do, and where it pays to go with a system that really works," says Rits.

The unique Spider G-spring gatepost attachments also win his favor. The insulated arced handles on wire ends carry current into post plugs, but allow removal of wires for passage. Because disconnection releases a wire's tension, Rits carefully sites a second post near the opening. The catch post allows him to maintain electrical current and tension while he moves cattle.

"Economy" fiberglass posts – his cost 50 cents each – tend to splinter more quickly in response to weathering Rits notes. He uses them for fence he doesn't plan to move. For posts that he plans to handle repeatedly or that have to flex, he selects more expensive types with a glossy, smooth coating that holds up well for several years.

 STARTING MATUA

AFTER FOUR YEARS of carefully watching his pastures evolve, beef producer Ed Hits decided he had an ecological niche for a prairie-type grass that would surge during fall on his south-central Pennsylvania farm. His native cool-season species recover in autumn from their long rest periods of summer, but don't reach their spring productivity.
    A '92 planting of reed canarygrass didn't thrive, so in '93 he turned to MATUA brome, a New Zealand import. Its high production potential made the management needed for its establishment seem worthwhile, he says.
He plowed and disked the well-drained field April 30. He planted 25 pounds of seed per acre (at a seed cost of $1.58 per pound) with a Brillion planter, followed by a spring-tooth harrow to incorporate the seed just below the surface. Soil moisture was optimum. The MATUA germinated in 21 days, but had lots of competition from broadleaf weeds and foxtail by July 6. He mowed the stand to 4 inches and baled the hay.
   On July 13 he sprayed with a half-pint of 2,4-D and a half-pint of Banvel per acre to suppress weeds and give the MATUA a competitive advantage. He also spread urea to provide 50 pounds of N per acre. He cut and baled again in August, October and November, finding no broadleaves and only a little foxtail.
    For cues on MATUA management, Rits relies on forage specialist Dr. Gerald A. Jung at the USDA-ARS Pasture Lab, State College, Pa. "What's critical is harvesting after the 45-day period allowed for seedfall from August 15 to September 30," says Rits, citing Jung's research. "Even after seedfall you have good forage. Harvest really lets the sunlight penetrate to the soil and helps the seed germinate and thicken the stand."
   Jung says MATUA is like birdsfoot trefoil in its palatability at maturity. Unlike trefoil, MATUA grass can't be stockpiled. Leaving the grass tall over winter can cause it die out in cool climates, says Rits.
  This year, he hopes the MATUA will lessen his dependence on other grasses and legumes in the September-to- November period, allowing him to lengthen rest periods and stockpile the more durable forages for winter. Also, he needs the strong feed value of the imported brome species to help finish stocker calves since he moved up his weaning by a month to September 1. He reasons that the calves will gain weight sooner if they get used to an all-forage diet, and believes the cows can use the extra month of grazing to put on body condition for winter.
    He plans to fence the field so cows graze MATUA this fall.                                                                        – G.B.

ALFALFA COMES THROUGH
Rits' September 1 grazing field day will be a good time to see how successful his alfalfa and MATUA plantings were in extending the rest periods for his grass/clover pastures.

"Alfalfa's a drought-saver on my flinty soils," says Ritz. He tries to harvest it about 33 days into its regrowth cycle rather than watch its height, which depends on moisture levels. In order to protect his pasture sward from overgrazing and to stockpile some grass
for winter in-field feeding, he feeds hay in August or September during dry periods. Rits pays special attention to balancing the needs of the legume and of his cattle around each fall's first killing frost. "I've had as much problem with bloat on frosted alfalfa as I have from grazing it wet. I make sure the cattle eat dry hay in the morning and then turn them on about noon," says Rits. His cattle pick out the grass first, then get to the defrosted alfalfa. He lets the cattle graze the alfalfa down to about 4 inches tall.

TROUGH TIME EVENS WATER TEMP
Rits' cattle told him last summer that white plastic pipe didn't entice them to drink more water, despite claims that the bright pipe keeps water cooler. He says graziers in the South, where days are longer and summers are hotter, may get more benefit than he did. Promoters say because white pipe reflects sunlight, it provides cooler water than does black plastic pipe. Rits tested water temperature coming out the ends of the pipes–where the "white" water was indeed cooler–and in the tank, where water from either color pipe soon measured about 10 degrees less than air temperature.

The important figure, however, was how much water the cattle drank during hot periods from each supply source. Rits compared water consumption by a group of cow-calf pairs during two six-day periods when daytime highs exceeded 95 F. The cattle were on the same paddock during these periods.

The group drank within a gallon of the same amount during each/period, Rits' records show. Further, he's observed that in areas where cattle don't graze, grass usually falls over above ground lines after several months, providing an insulating shade layer. In the six-day periods, his cattle drank 93 percent of their water during the day, 7 percent at night. Pipe color matters for another reason in colder climates. Rits knows one Ontario farmer who says he uses heat- absorbing black pipe because freezing is more of a problem than is overly warm water.

No Tipping, No Waiting
JUST GETTING COOL, clean water to each pasture is not enough. If cattle drink faster than a tub can refill, they can find ways to amuse themselves with dangling float valves and with empty troughs that they can roll with the toss of a bovine head. Producers usually are less amused.
"I want cattle to be grazing, walking to get a drink, or walking right back to eat more grass," says beef grazier Ed Rits. "There's no gain while they're waiting on water."
Low-volume systems can work adequately when cows drink one at a time. "But my cows always seem to drink in threes," says Rits. He is testing component combinations this summer to find a reasonably priced system that can supply water for three mature cattle drinking simultaneously, each consuming about 5 gallons of water in about 2 minutes. That's a typical situation for his herd– one that taxes most movable in-paddock water systems he's tried.
"Many float valves won't let enough water in, and 25- gallon tanks that hold only 17 gallons cause trouble," says Rits. "If a tank gets nearly empty, cattle will tip it over trying to get more water."
He's put together two prototypes that do better. Rits selected a 30-gallon polyethylene tank newly designed for pasture watering by Sentry Inc., a division of Agri- Engineering Inc. It holds 23 gallons, leaving him an 8-gallon cushion after the 15-gallon drawdown–even if no new water flowed in. The 14-pound tank has almost straight sides, making it nearly tip-proof by cattle.
With slow-drinking (or unusually docile) animals, a 2.5- ga1lons-per-minute valve might suffice. But Rits wants a surer thing, so he outfitted a tank with a 10-gpm valve. Price for the high-volume valve and tank is about $70, only $10 more than for Sentry's 3-gpm valve/tank set. He also uses a Philmac valve, from Rife Hydraulics that provides about 7.5 gpm at his 40-psi line pressure–less in the more distant paddocks where pressure is lower. An oversized, 6-inch float is big enough that cows can't get into their mouths. Rits also uses Rife's 30-gallon tank that is factory-modified to accept the valve. (The tank assembly–complete with quick-disconnect fittings–sells for less than $200.)
He'll have several other components in his pastures this summer. Tanks include: a 55-gallon commercial food transport barrel cut down to 30-gallon capacity; a white 25-gallon tank from Kentucky Graziers Supply; and a black plastic 35-gallon tank from New Zealand.
Valves in his pastures this summer include:






    http://www.awionline.org/www.awionline.org/farm/diambk1.gif);">
  • Dare float valve. "Slow, but dependable for young heifers who can drink in groups, or for single cows."
  • An upright universal Job valve from python that is situated in the center of a tank. Rits occasionally has to jiggle the valve's pin to keep water flowing.
  • A bottom-entry Job valve activated by a string and float. "This float system works very well. My cattle like to play with some of the other string systems."
  • Kentucky Graziers Supply float valve. After Rits reported to KGS that water came out through a small opening within the valve, he received an improved version that works fine. But he says the float valve nut can still come loose, leaving the mechanism vulnerable to cow damage.
  • Hudson full-flow valve with a diaphragm for quick start and shut-off. He'll outfit this valve in a cut-down $5 plastic barrel with $10 of plumbing supplies and $10 in labor.


THE TRIALS OF SUMMER
With the chores of last winter behind him, Rits is happy to be back to managing pasture and this summer's crop of observations from his ongoing product evaluations. He's experimenting to make a better-quality compost, and to compare the value of compost versus fresh manure for fertilizing orchardgrass hay.

Rits wants farmers to more actively help each other innovate, adapt and prosper with sustainable methods. "Unless you meet with others who are going the same direction, you lose enthusiasm, because you think you're the only one doing it." He sees on-farm research at his Tuscorora Mountain Acres as one way to strengthen the pool of existing knowledge farmers can share.

Editor's Note: You can contact Ed Hits at RR1 Box 87, Honey Grove PA 17035, (717) 734-3745.


Reproduced with permission of the publisher. The New Farm, May/June 1994, p. 19-20, 22, 24-25.

Profitable Poultry on Pasture

Broilers and layers follow beef cattle in this rotation
Michael Traupman

SWOOPE, Va.–Joel Salatin's pastures are for the birds. Ninety-five of his 550 acres are devoted largely to ranging chickens that help him net about $25,000 working only six months a year. Last year, Salatin produced more than 6,000 broilers and 3,000 dozen eggs–with pasture as the main feed source.

Joel Salatin moves his broilers to new pasture simply by pulling their crates into fresh grass:
[Click on picture icon to view, and use your browser back button to come back to text]

"Consumption of grain decreases as consumption of grass increases. It all keeps the expense side of production down," says Salatin. " A chicken will only consume so much grass. After all, a chicken is not a cow. But....the freshness of the forage has everything to do with consumption. When we move them, they will eat more forage and more bugs and less grains." Pasturing has cut Salatin's feed expenses up to an estimated 60 percent on layers and 30 percent on broilers. Also, the broilers reach market weight two weeks earlier than normal.

While Salatin knows that his chickens prefer to graze on pastures with a legume, preferably clover, he is convinced that they do so well on pasture because they are moved often and are constantly getting fresh grass and manure to graze over. "The key is extremely frequent freshness. Animals have to have their beds changed–their linens cleaned and beds cleaned just like people. They eat much more if they, just like you and I, get fresh food and drink," he says.

Beef-Poultry Rotation
On Salatin's Polyface Farm, 50 head of beef graze pasture first. Controlled by portable electric fences, the cattle leave a trail of manure and 4 to 5 inches of grass stubble in their wake.

"The cows have to graze ahead... and get the forage down to poultry levels" Salatin explains. Chickens are attracted to the lush regrowth stimulated by the grazing cattle. "One to 2 inches of grass residue is ideal. Four to 5 inches works fine, but 6 to 7 inches is difficult. Long grass also isn't as clean. The broilers mash it over and their manure will not make contact with the soil surface."

Four days after the cattle chow down on the grass, the chickens are put on that pasture to clean up after them. Salatin says both his layers and broilers love to pick through fresh manure for insects, including emerging fly maggots, and undigested food particles, both helpful sources of protein. "The chickens sanitize the field, eating the parasites," adds Salatin.

Chickens pasture a field only once in two years. After pasture is grazed by the chickens, hay is cut twice and stored for cattle feed in winter. Salatin now has nearly four years' worth of hay in storage.

Pasturing In Pens
The American layer breeds are extremely aggressive. .'They scratch. .. and move. They'll graze all year and they'll go out in all kinds of weather. About the only thing that keeps them in the house is snow," Salatin says.

In contrast, he says, "The broilers... are very lethargic. They are bred like a race car to eat a lot of feed and gain a lot of weight really fast. For them, the free-range concept doesn't work. They don't free-range. They stay around the feeder. You have to force them onto the pasture so they range. "

The dissimilar grazing characteristics of the birds force Salatin to use two very different kinds of portable houses.

Cornish cross broilers spend all of their time in 10- x 12-foot pens that Salatin moves daily. Each wooden and aluminum pen is 2 feet high and holds 100 birds. One end of each pen is enclosed with an aluminum sheet and is always faced west into prevailing winds to minimize health problems in cold, wet weather. The other sides are wrapped in poultry netting to provide plenty of fresh air and sunlight. Salatin only raises broilers from April 1 to Oct.1.

Pens include a removable feed trough and gravity-fed waterer. To save time, Salatin stores a pre-mixed ration of ground corn, soybean meal, meat and bone meal with a probiotic in old fuel tanks in the field. He places the pens in a V-shaped pattern. "By running the pens with a V formation, I don't have to keep access clear," he adds. "I don't need to make room for feeding and watering."

On one acre, Salatin is able to graze roughly 500 birds. He raises seven batches of broilers per season. Salatin moves the birds to fresh pasture every morning by sliding a 2-wheeled dolly under the pen and pulling it only a few feet. The chickens merely have to walk with the pen. "It only takes 1.5 minutes to move them and 1.5 to service," says Salatin.

A Rolling Henhouse
Free-ranging layers venture up to 30 yards from their portable pens, which Salatin calls eggmobiles. "The eggmobile would be worth it even if they didn't lay eggs," Salatin adds. "The beauty of this is, because the house is just a bed for them– the lunch counter and gymnasium are outside –you can cram them in pretty well in that house. They sleep in there. That's all they do. At night when they sleep, I don't even think half the floor is covered."

[Click on picture icon to view Salatin's eggmobile, and use your browser back button to come back to text]

An eggmobile is simply a portable 12- x 20-foot wooden henhouse that holds 230 birds humanely. It has a lean- to roof that slants from 6 feet to 2 feet in height. The floor is wire mesh in summer and hay-covered plywood in the winter. Although there is a big door on each end, Salatin says you don't have to walk inside to care for the chickens or gather eggs. Laying boxes built around sides can easily be opened from the outside for egg removal.

More Grass, Less Grain
Salatin says he began to save money on grain when he realized his hens were not consuming the grain he was putting out. "I was mixing feed here and putting it in the eggmobile. Yet they were pretty much keeping off the grain. I thought maybe the recipe was off," he recalls. "So, I thought I'd let them tell me what they wanted."

Salatin arranged the feed in separate feed boxes, delivering it to the chickens cafeteria-style with a container each for wheat, barley and bone meal. The chickens made a clear choice. "Basically they were eating whole corn," says Salatin. "They eat only what they want. They get their protein from the grass, especially in the summer. What they need are carbohydrates. And those are the calories they get entirely in corn."

Salatin says he doesn't mind substituting inexpensive corn for much more costly feed, since the chickens are getting their necessary nutrients from the field. "Protein is expensive. Corn is relatively cheap. They are consuming the cheap part of the feed-seven cents a pound compared to 11 to 12 cents a pound."

In the summer months especially, his layers consume only seven pounds of feed per 100 chickens per day, costing roughly 77 cents per 100 birds. On other farms, Salatin says confined chickens will consume up to 30 pounds per 100 per day, for a cost of $2.10 per 100 birds. "That's significant savings," he adds.

Using a system he loosely modeled after Booker T. Whatley's Clientele Membership Club, Salatin sells roughly 6,000 broilers a year at $1.20 per pound, live weight, to more than 300 families each year. The average bird weighs about 4 to 4.6 pounds. Having slightly more than $2 in expenses for each bird, Salatin nets $2.80 a bird.


Reproduced with permission of the publisher. The New Farm, May/June 1990, p. 20, 23.

Farm Animals: Issues


Sweeping Changes or Sweeping Under the Rug?

by Henry Spira

Does the recent announcement of sweeping new changes to meat inspectionopen opportunities to push the farm animal welfare issue onto the nationalagenda? Harmful bacteria kill more than 4,000 people a year and sickenfive million. The new policy calls for a more scientific approach to detectingE. coli and salmonella in meat and poultry. But just like the old policy,the focus remains on dealing with effects and ignoring causes. It coversup the consequences of the stressful conditions in which this country'sfarm animals are raised.

Today's endemic disease in farm animals is not the natural order ofthings. One need only see the filthy and cramped environments in whichtoday's chickens, turkeys, pigs and veal calves are raised to see the reasonfor the epidemic. When living beings are crammed indoors on a thick bedof fecal waste and forced to spend a lifetime choking on ammonia fumes,is it so surprising that the end result is diseased meat?

As the intensity of confinement has increased, so has the prevalenceof food borne diseases. The direct relationship between stress and diseaseis well documented. In humans and other animals.

There's an urgent need to focus on the causes of these illnesses andon prevention. It is universally recognized that prevention is more costeffective and more conducive to promoting well-being than treating diseasesafter the fact.

Such a prevention campaign could begin by examining the connection betweenthe escalating abuses of intensive confinement systems, the parallel demiseof animal health and the increase of food borne illnesses in humans whoeat them.

While our ideal is the non-violent dinner table, we recognize that eatinghabits tend to change slowly. As long as people continue to consider animalsas edibles, we need to relentlessly pressure industry and government todevelop, promote and implement humane standards in the rearing, transportand handling of farm animals. Reducing farm animal suffering would benefitboth the public and the animals.

There's another critical defect which remains unaddressed in the newprocedures. The USDA is mandated, by law, to both assure the safety ofmeat and at the same time promote the meat industry.

The futility of the government taking on conflicting roles was recentlydemonstrated by the ValuJet disaster. Just as in the case of aviation,the government cannot be an advocate for food safety while simultaneouslypromoting the meat industry.

Why the government should spend taxpayer dollars to market meat productsfor a multi-billion dollar industry defies logic. The health risks associatedwith a meat-centered diet are increasingly well documented. Would governmentmoney not be better spent in protecting public health? Current thinkingseems to be that the government should get out of the business of promotingthe airlines. It doesn't belong in the business of promoting meat either.


Henry Spira, Coordinator of Animal Rights International, was awardedAWI's 1996 Albert Schweitzer Medal .


AWI Quarterly Spring/Summer 1996, Volume 45, Numbers 2 &3


Is the Public Ready to Roast the Meat Industry?

by Henry Spira

For decades, the well-being of farm animals has been a largely ignoredissue. So it may come as a surprise that most Americans want animals tobe protected from cruelty. This is the overall finding of a recent telephonesurvey of 1,012 adults by the Opinion Research Corporation of Princeton,New Jersey, for Animal Rights International.

The survey found that 93% of US adults agreed that animal pain and sufferingshould be reduced as much as possible even though the animals are goingto be slaughtered anyway.

Nine out of ten adult Americans also disapprove of current methods ofraising food animals in spaces so confining that sows and calves can'teven turn around and that laying hens are unable to stretch their wings.

With these concerns, it's hardly surprising that more than eight outof ten people think the meat and egg industries should be held legallyresponsible for protecting farm animals from cruelty. And that 91% thinkthe US Department of Agriculture should be involved in protecting farmanimals from cruelty.

What may well alarm corporate executives is that on top of this, 58%of the public also believes that fast food restaurants and supermarkets,who profit from factory intensive farming, should be held legally responsiblefor protecting farm animals from cruelty.

Too often, in the past, animal protectionists have ignored the 95% ofanimals who do not necessarily rank high in popularity. But, this studyshows that the American public cares about all vulnerable animals. And,as demonstrated by the recent successful campaign to abolish the face brandingof cattle, they are ready to confront and challenge abuses in animal agriculture.

As the public focuses on the horrors of factory farming, smart-thinking,image-conscious corporations, who profit from animal agriculture, woulddo well to respond swiftly and pro-actively. The alternative will almostcertainly be a consumer backlash as animal protectionists begin to launchpublic awareness campaigns. In this connection, we have begun to use thesurvey to talk with major companies such as Campbell Soup, Heinz and PepsiCoabout setting humane animal standards for themselves and their suppliers.This was the successful formula which energized Revlon and the whole cosmeticsindustry in the 1980s.

Pressures on the meat-industrial complex will continue to intensifyfrom all directions. In addition to farm animal well-being issues, intensiveconfinement systems will be increasingly challenged on the grounds of publichealth, protecting the environment, feeding the starving millions and leavingsome quality of life for future generations.


AWI Quarterly Fall 1995, Volume 44, Number 4


Do Animal Protection Laws Dupe the Public?

by Henry Spira

"If, as Mahatma Gandhi states, 'The greatness of a nation and itsmoral progress can be judged by the way its animals are treated', the UnitedStates is being left behind by much of Western Europe." So says DavidWolfson in a soon to be published study documenting the fact that presentlaws are of no help to the cruel realities suffered by seven billion farmanimals. Wolfson, an attorney in a major international law firm, suggeststhat while farm animals have no real legal protection, society perceivesthat they do.

As outlined by Wolfson, laws give the perception of protecting farmanimals but, in reality, provide little or no protection. Federal law failsto provide any protection to farm animals on the farm. Moreover, whilemany state cruelty laws still cover farm animals in theory, they are rarelyif ever applied. And most disconcerting is the trend of farm animals beingincreasingly excluded from the reach of state cruelty laws.

At present, 25 states exclude "accepted farming practices"from the reach of such cruelty laws. Nineteen states amended their statutesin the last twelve years. Eleven of these amended their statutes in thelast six years and in just the past year, two states amended their statecruelty statutes to exclude accepted animal agricultural practices. Theresult is that any "accepted farming practice" is legally permitted-- no matter how cruel. Obviously, there would be no need to amend statecruelty laws were there not the fear that accepted practices would be judgedcruel. In effect, Wolfson states, animal agriculture has been left to regulateitself.

Consequently, our legal system appears to acquiesce to dragging a halfdead cow, chained around her hind leg, through the stockyards and keepingcalves deliberately anemic by depriving them of the most basic foods andwater while imprisoning them in wooden crates for their entire short, utterlymiserable lives. "The reality in the US", says Wolfson "isthat our society, through its laws, seemingly condones cruelty to animals."

Is this how the American public wants farm animals to be treated? Muchhas happened in the past few years to suggest that not only are increasingnumbers of people opposed to the routine and needless misery inflictedon seven billion farm animals each year, but that industry and governmentare finally beginning to respond to the public's concerns

Encouraging developments include USDA's rapidly halting the face brandingof Mexican cattle in the wake of widespread public outrage. And the USDAthen following through by placing the issue of farm animal well-being ontheir agenda. Earlier, the American Meat Institute issued groundbreakingguidelines promoting the humane handling and transport of animals. MajorAmerican slaughter houses have recently replaced the shackling and hoistingof large conscious animals. And fast food giant McDonald's has told itssuppliers to adhere to guidelines for more humane treatment of farm animals.

These reforms are encouraging. Still, life for farm animals has neverbeen more miserable. Today, the only limits to increasing the confinementand trauma of farm animals are economic. The only reason they don't crammore laying hens into a cage is because the increased mortality would makeit less profitable. The same thing holds true for the pigs and veal calvesroutinely denied the most basic freedoms to turn around, lie down, andextend their limbs.

The enormous response to our recent campaign to end the face brandingof Mexican cattle suggests that the public will not tolerate animal abuseif it is made aware of the facts. But, as Wolfson notes, the public believesthat "although we eat animals, there are laws which prevent theseanimals from being treated cruelly." In reality, farm animals arebeing subjected to ever more stressful confinement systems and have nolegal protection.

How do we proceed? The public may want to replace or reduceits consumption of meat. At a minimum we can all agree that as long asthe public eats meat, there's a need to refine current methodsof animal agriculture. But in order to make informed choices, we need toknow the realities of confinement systems, transport, handling, and slaughterof farm animals. We also need to understand the lack of legal protectionfor farm animals and the need for a farm animal protection bill. The USDAand producer groups must be encouraged to promote the well-being of farmanimals. Users of the products of animal agriculture need to enforce morehumane standards for their suppliers.

Until the seven billion farm animals do have legal protection, agribusinessesneed to respond rapidly and substantively to emerging public concerns.If they don't, let's place them in the unenviable position of having topublicly defend their right to be cruel.


USDA Reviews Livestock Care and Handling atNation's Stockyards

In October, the US Department of Agriculture's (USDA) Packers and StockyardsAdministration announced completion of its review of handling practices,services, and facilities in US stockyards. USDA conducted the review inresponse to public complaints of cruel treatment of downed animals at stockyards."Downers" are animals who are unable to walk or stand withoutassistance.

USDA sent warning letters to 52 markets, citing practices that mustbe corrected or discontinued immediately. Eighty one downed animals wereobserved at 66 markets. A total of 1,415 markets were inspected. USDA issuedadministrative complaints against two stockyards for the manner in whichthey handled downed animals. In addition, seven warning letters were sentto markets for failure to provide proper care and handling of downed animals.

Downers suffer horribly, particularly during transport. When callingfor support of a 1992 Senate bill requiring the humane euthanasia of downedlivestock, the Eau Claire, Wisconsin Country Today stated: "Withthe exception of a rare injury during trucking to a livestock auction houseor slaughterhouse, an animal that cannot walk off a truck when it arrivesat an auction point or slaughterhouse is an animal that was too ill tobe shipped in the first place."


Henry Spira, who has been active in human and animal rights movementsfor half a century, has coordinated successful campaigns to promote alternativesto the use of animals in laboratories. He has been a merchant seaman, autoassembly line worker, Journalist, teacher, and an activist for civil rightsand trade union democracy. He is now focusing on the plight of seven billionfarm animals and plans to write a column regularly for the AWI Quarterly.


AWI Quarterly Winter 1995, Volume 44, Number 1, p.11


Farm Animals - AWI

News:
The Animal Welfare Institute is pleased to help sponsor the 42nd Congress of the International Society for Applied Ethology
 

The 42nd Congress of the International Society for Applied Ethology will be held at University College Dublin, Ireland from 5-9 August 2008. Our aim is to make the congress dynamic with a new approach to workshops that will facilitate the exchange of ideas between participants.  For more information, click here.


New Jersey Supreme Court Hears Appeal in Landmark Farm Animal Welfare Case

Trenton, NJ (July 11, 2007) - New Jersey's Supreme Court has granted a petition to hear a landmark case challenging the state's "humane" standards for the treatment of farm animals. These regulations currently permit numerous inhumane practices, including housing pregnant pigs for months at a time in cramped gestation crates, tethering and confining calves raised for veal until they are sent to slaughter, and performing mutilations without anesthesia—including castration, de-beaking, de-toeing and tail docking.

The Animal Welfare Institute is part of a broad coalition of humane organizations, farmers, veterinarians, and environmental and consumer groups that petitioned the court in April 2007 to reverse a lower court's February 16, 2007 ruling upholding the New Jersey Department of Agriculture's (NJDA) approval of some of the most egregious factory farm abuses as "humane." The appeal goes beyond any previous legal action taken on behalf of farm animals in that it seeks a judicial declaration that many common factory-farming practices are inhumane under New Jersey law.


New Food Seal Sets Highest Standards for Humane Treatment of Farm Animals Animal Welfare Approved Surpasses Other Seals; First Humane Program to Champion Family Farms and Repudiate Double Standards in Other Labeling Programs

New Standards Supported by Farmers, Top Chefs and Notables Such as Willie Nelson, Rosemary Harris and Robert F. Kennedy, Jr.

Please visit www.AnimalWelfareApproved.org, the new website for the Animal Welfare Approved standards program.


Please Help These Chickens

You may think you're looking at rabbits. But according to the United States Department of Agriculture (USDA), you're looking at chickens. And chickens, says the USDA, are not really animals.

  • Click here to view this ad recently featured in the New York Times by the Humane Farming Association, Animal Rights International and Animal Welfare Institute.

"Scenes from USDA Inspected Slaughterhouses"

Animal Welfare Institute and Humane Farming Association release new video footage entitled "Scenes from USDA Inspected Slaughterhouses"  To view video click here.

New Food Seal Sets Highest Standards for Humane Treatment of Farm Animals

Animal Welfare Approved Surpasses Other Seals; First Humane Program to Champion Family Farms and Repudiate Double Standards in Other Labeling Programs

New Standards Supported by Farmers, Top Chefs and Notables Such as Willie Nelson, Rosemary Harris and Robert F. Kennedy, Jr.

Syndicate content